A process optimization for bio-catalytic production of substituted catechols (3-nitrocatechol and 3-methylcatechol
نویسندگان
چکیده
BACKGROUND Substituted catechols are important precursors for large-scale synthesis of pharmaceuticals and other industrial products. Most of the reported chemical synthesis methods are expensive and insufficient at industrial level. However, biological processes for production of substituted catechols could be highly selective and suitable for industrial purposes. RESULTS We have optimized a process for bio-catalytic production of 3-substituted catechols viz. 3-nitrocatechol (3-NC) and 3-methylcatechol (3-MC) at pilot scale. Amongst the screened strains, two strains viz. Pseudomonas putida strain (F1) and recombinant Escherichia coli expression clone (pDTG602) harboring first two genes of toluene degradation pathway were found to accumulate 3-NC and 3-MC respectively. Various parameters such as amount of nutrients, pH, temperature, substrate concentration, aeration, inoculums size, culture volume, toxicity of substrate and product, down stream extraction, single step and two-step biotransformation were optimized at laboratory scale to obtain high yields of 3-substituted catechols. Subsequently, pilot scale studies were performed in 2.5 liter bioreactor. The rate of product accumulation at pilot scale significantly increased up to approximately 90-95% with time and high yields of 3-NC (10 mM) and 3-MC (12 mM) were obtained. CONCLUSION The biocatalytic production of 3-substituted catechols viz. 3-NC and 3-MC depend on some crucial parameters to obtain maximum yields of the product at pilot scale. The process optimized for production of 3-substituted catechols by using the organisms P. putida (F1) and recombinant E. coli expression clone (pDTG602) may be useful for industrial application.
منابع مشابه
Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase.
Co-metabolism of 3-methylcatechol, 4-chlorocatechol and 3,5-dichlorocatechol by an Achromobacter sp. was shown to result in the accumulation of 2-hydroxy-3-methylmuconic semialdehyde, 4-chloro-2-hydroxymuconic semialdehyde and 3,5-dichloro-2-hydroxymuconic semialdehyde respectively. Formation of these products indicated that cleavage of the aromatic nucleus of the substituted catechols was acco...
متن کاملAssessment of catechol induction and glucuronidation in rat liver microsomes.
Catechols are substances with a 1,2-dihydroxybenzene group from natural or synthetic origin. The aim of this study was to determine whether catechols (4-methylcatechol, 4-nitrocatechol, 2,3-dihydroxynaphthalene) and the antiparkinsonian drugs, entacapone and tolcapone, at doses 150 to 300 mg/kg/day, for 3 days, are able to enhance their own glucuronidation. The induction potency of catechols on...
متن کاملCharacterization of catechol glucuronidation in rat liver.
Catechols are a class of substances from natural or synthetic origin that contain a 1,2-dihydroxybenzene group. We have characterized the glucuronidation by rat liver microsomes and by the rat liver recombinant UDP-glucuronosyltransferase isoforms UGT1A6 and UGT2B1 of a series of 42 structurally diverse catechols, including neurotransmitters, polyphenols, drugs, and catechol estrogens. Small ca...
متن کاملDegradation of toluene by ortho cleavage enzymes in Burkholderia fungorum FLU100
Burkholderia fungorum FLU100 simultaneously oxidized any mixture of toluene, benzene and mono-halogen benzenes to (3-substituted) catechols with a selectivity of nearly 100%. Further metabolism occurred via enzymes of ortho cleavage pathways with complete mineralization. During the transformation of 3-methylcatechol, 4-carboxymethyl-2-methylbut-2-en-4-olide (2-methyl-2-enelactone, 2-ML) accumul...
متن کاملCatalytic oxygenation of phenols by arthropod hemocyanin, an oxygen carrier protein, from Portunus trituberculatus.
The hexamer (Pt-6Hc) of swimming crab Portunus trituberculatus hemocyanin (Pt-Hc) and one of its monomeric subunits (Pt-1Hc) have been purified and converted to an efficient phenol monooxygenase (phenolase) by treatment with urea. To explore the intrinsic chemical reactivity of the dicopper center of Pt-Hc, the spectroscopic features and phenol monooxygenase (phenolase) activity of the isolated...
متن کامل